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ABSTRACT

The problem of electromagnetic radiation and scattering from perfectly

conducting bodies of revolution of arbitrary shape is considered. The math-

ematical formulation is an integro-differential equation, obtained from the

potential integrals plus boundary conditions at the body. A solution is

effected by the metnod of moments, and the results are expressed in terms

of generalized network parameters. A computer program for computing the

generalized impedance matrix of an arbitrary body of revolution is included.

The expansion functions chosen for the moment solutions are harmonic

in 0 lazimnath angle) and subsectional in t (contour length variable). Because

of rotationai symmetry, the solution becomes a Fourier series in 0, each term

of which is uncoupled to every other term. Hence, the problem reduces to a

set of independent modes, one for each harmonic term.

Illustrative computations are given for radiation from apertures and

plane-wave scattering from bodies of revolution. The impedance elements,

currents, radiation patterns, and scattering patterns for a conducting sphere

are compkited both from the general program dnd from the classical eigenfunction

solution. The agreement obtained serves to check the general program. Sim-

ilar computations for a cone-sphere illustrate the application of the general

program to problems not solvable by classical methods.
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I. INTRODUCTION

Determination of the behavior of a conducting body in a known impressed

field is a fundamental problem of applied electromagnetic theory. Specific

examples are scattering by conducting objects and radiation from conducting

antennas. A general procedure for tr:ating such problemE is given by the

method of moments. l23 This is a procedure for reducing the functional

problem to a finite dimensional matrix problem. In electromagnetic theory,

the resultant matrices can be identified as generalized network parameý.rs.L5]

Once the generalized impedance matrix of a body is knoi*T., the behavior of

that body for arbitrary excitation is easily calculated by matrix manipula-

tions. Furthermore, ý effect of impedance loading can be accounted for by

constraints on the matrix equations. [2,4,5]

The problem is formulated in the conventional way as follows. Let Fj

denote the known impressed field and Bs the scattered field due to currents

on the body. Then the total field g is the sum of the impressed and

scattered fields, that is,

The scattered field can be expressed in terms of a vector 2-otential A_ and

scalar potential D as

- (2)

"where

A ý-~

-jkR

§S = as (4)
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Here S is the surface of the conductor, R is the distance from a source point

to the field point, j is the surface current on S, and a is the surface

charge on S. The current and charge are related by the equation of continuity

S. = -j Oa (5)

The boundary condition requires that the tangential component of total

vanish on S. Hence,

=tsn = -kan (6)

where the subscript tan denotes tangential component on S. The problem can

now be stated succinctly as

L(•)= •n(7)

where L is the integro-differential operator

L(J) = [j4 + %]tan (8)

A solution of (7) gives the current j on S. Usually we are interested in

some functional of , which can be computed once j is kncwn.

Thia report considers the special case of bodies which are rotationally

symmetric about an axis. Because of this symmetry a Fourier series expansion

ir. the angle of rotational symmetry reduces the problem to a system of inde-

pendent modes. This is important from the standpoint of computation, bccause

it is faster to invert several small matrices instead of one large one. 'The

particular rase of scattering by conducting bodies of revolution has been

treated previously by Andreasen. [6 His solution is conceptually similar to

ours, but differs in detail.



II. METHOD OF SOUJTION

To effe..t... :f .7 u e mtt o oi moments, which is

closely related to Galerkin's method.[1,2] This procedure approximates (7)

by a matrix equation, which can then be inverted by known algorithms. The

matrix so obtained is a generalized impedance matrix for the body.[3] The

excitation of the body is represented by a voltage matrix, and the resultant

current on the body is represented by a current matrix.

For the method of moments, let the inner product be defined as

<W SP W ds; (9)
S

where W and J are tangential vectors on S. A set of expansion functions

(,.) is next defined, and the current on S approximated by

-Ij (10)

where I. are constants to be determined. Equation (10) is substituted into

(7), which, because of the linearity of L, reduces to

Z ~j 'i j =•can (11)

A set of testing functions (W,. is defined, and the inner product of (11)

with each W is taken. The result is

I j <3, j> -- < t. •> (12)



i =1,2, ....... The subscript tan has been dropped from i because the iiAner

product involves only tangential components. We now define the generalized

network matrices

[Z] = [< L >] (1)

[V] = L< W, •i >] (14)

LI] = [i.] (15)

and rewrite the set (12) as

[z] [3] = [v] (16)

[Z] is the generalized impedance matrix, and [Y] = [Z]- is the generalized

admittance matrix. The inverse of (16)

[I] = [Y] LV] (17)

gives the coefficients I. of the current expansion (10), and hence is an3

approximate solution to the problem.

The impedance elements of (13) are explicitly

ZiJ = OS (J Aj + V4j) ds (18)

where we have used (8) and (9). The subscript j denotes that L- and c.

are the potentials due to ,• and a.. If the two-dimensional divergence3 3

theorem is appiied to the vector •W. on a closed surface, the following

identity results:

W. ds W= -~~ ds (9

S S
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If W is thought of as a current, the charge associated with it is

Ci = - _1 _V -(2 0 )

Now (18) can be written as

Zij j (§S 1 _j + ai c j) ds (21)

Equation (21) is more convenient for computation than (18) because the

gradient operation on D has been eliminated.

So far the discussion has been for an arbitrary conducting bodj.

Henceforth we restrict consideration to surfaces S generated by revolving

a plane curve about the z axis. The surface and coordinate system are shown

in Figure 1. Here p,o,z are the usual cylindrical coordinate variables, and

t is a length variable along the curve generating S. We desire the expan-

sion (10) to be general enough to approximate an arbitrary J on S. Hence,

independent sets of functions are defined ae

A. (t) ej•o
ýmj = 1t fj(

(22)

Ij = • fj(t) ejm'

where vt and 3 are unit vectors t-directed and 0-directed, respectively.

We have chosen the f in both sets to be the same, but it is not necessary

to do so. The current expansion (10) now becomes

(it >1 (I, + 10. (23)
m, j

For testing functions, choose



z

t=N

Oe

71k Ut

UO

t=

'00'ý 
06-

X.

Figure L. Body of revolut.-on and coordinate system,
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t -jno•n = •t f.(t) e"

(24)

f= f(t) e-jno

which differ from (22) only in the sign of the exponent. The W n are orthogonal

to m / n, over 0 to 2n on 0, and also to IJý (the field from 3m). Hence,

atll impedance elements are zero except those for which m = n, and each mode

can be treated separately. This is the major simplification introduced by

the rotational synmmetry of the body.

The use of (22) and (24) to evaluate the elements of (2-1) results in

the partitioned matrix equation

rzttl [zt] ,,I F t !Vn]
n n i Inn !1

j L i L (25)

Here the elements of the Z submatrices are

ztt t >

-n -(26)

_o fl LS;jt>

n_( = Cý *>

n ij -ni n

thE elernents of the V submatrices are

lennn



St

(Vt).

8n

(27)

and the elements of the I submatrices are the coefficients in (23). Note

that, for N terms in the Fourier series on 0, there are N sets of matrix

equations (25).

The solution to (25) can also be written in partitioned form as

[NJ] ntt [tn [[in]1

~ytt) [yt$ L~J(28)
r [Yt YO1 l

The Y submatrices must in general be obtained after inversion of the entire

Z matrix, and are not the inverses of corresponding Z submatrices. However,

the -n mode matrices are related to the +n mode matrices by

-~ _[~t1  Y~]j(29)

Hence, only the n > 0 mode matrices need be inverted. The proof of (29)

follows from the fact that the Z matrices satisfy the same equation (see

next section), and this symmetry survives matrix inversion.

Finally, for an explicit solution we must choose the f. (t), the t expan-1

sion functions. It is known that subsectional expansions, using pulse functions

[211Sor triangle functions, give well-conditioned matrices. The current must be
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differentiated to obtain the charge; hence it is preferable to use triangle

functions. Furthermore, a triangle expansion gives a piecewise-linear

approximation which converges about twice as fast as a step approximation. [1,23

Finally, if pj is expandcd in triangles instead of Z the divergence formula

and the treatment of the end points of t become simpler. Hence, we chose

fi(t. _ T(t-ti) (30)
1 P i

where T is the triangle function

I 1 - H:!, It! < !

r(t) = (31)
0 It! > 1

When using these functions, distance and frequency are scaled so that the t.

are one unit ftpcrt. As Li Figure I, t is zero at the lower pole and N at

the upper pole. There are (N-1) triangle functions with peaks at 1,2,3.. .N-1.

Numerical evaluation cf the imfedance elements is quite difficult be-

cause of the complexity of the focru2las. An approximate evaluation was

obtained by approximating each triaagle rvtntion by four steps. The potential

integrals due to each step are evaluateq at th- center of all steps by a

numerical integration. The second integrutloi, represented by (18), is then

aoroximated by the value of the intagrand nt the center of each step,

summed over the four step approxiation to the testing triangle. The details

of the solution are gi ren in the next section, and the computer program ard

instructions for using it are given in Appendix A.



III. EVALUATION OF THE IMPDANCES

The generalized impedances for a body are given by (21), which can be

written in greater detail as

Z..~V ds s[u.,W 
-k

S S

(32)

This is valid for bodies of arbitrary shape. For boaies of revolution,

, N r 23

ads= ajt ) d p(t) (35)

S 0 C

I I 1 r (j + (34)

R 2+ -,2 2 pl' cos (0- +') • (z- z' (35)

Four types of impedances are defined by (26). To evaluate them, we use (22)

and (24) to obtain the W j terms in (32) as

= ~'0~f.t' f(t) (aý P-

where p and q represent permutations o1f t and 0. The unit vector dot products,

in terms of the body coordinates defined by Figure 1, arc



ri

=it = sin v sin v' cos(0-0') + cos v cos v'

S• = -sin v' sin(O-- ') (37)

i" = sin v sin (0-p')

=cos(O-0')

Here v is the angle between the t direction and the z axis, being positive

if 3A points away from the z axis and negative if 3t points toward it.

Changing (0-o') to a new variable, and expressing the sine and cosine terms

of (37) as exponentials, one 0 integration in (32) can be performed. The

remaining 0 integration defines the Creen's function. 6 )

,n" -jk-Ro

gn ' d , cos no (38)

0

where R is given by (55) with 0' = 0. With f. given by (0), the resultanti f1

expressions f'or the impedance elements (26) are
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(Ztt). dt' dt juT(t'-i) T(t-j)(sin v sin v' n-i
n tij 2

C C

+ cos v cos v' g ) + - T'(t'-i) TI(t-j)g
YA jWE n

Sdt' [ iT(V-i) sin v' T - ( )g

0 N

+ -E- T'(t'-i) T(t-j) gwIE p n

(Zot) .. - dt' a dt [+u- T(tV -i) T(t-j) sin v gn+ - gn-I

o % 2

n T(t-i) T'(t-j) gn2n, n

(zo t Nd (ýTVi At%)9n gn-I
n ij 2

%00

2+ n)
+_2 T(t'--) T(t-j) gn]

Here T' is the derivative of a triangle function

1i, -1<<t<l

T'(t), -1, 0 < t < 1 (40)

t itl> I

which is a pulse doublet. Further evaluitior of (39) is done by numerical

met hods.

The integrations of (39) involve many different integrands, and to re-

duce the number of integrations the following approximatircs are made. For
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the t integration, the T function is approximated by four pulses of amplitudes
1/4, 3/4, 3/4, 1/4, as shown in Figure 2(a). The drlivative of T is repre-
sented exactly by four pulses of amplitude 1, 1, -1, -1, as •hown in
Figure 2(b). The functions p, sin v, and cos v are assumed constant over
each pulse, equal to tneir values at the midpoint of the pullse. For the t'
integration, the T function is approximated by four impulse functions, of
s trengths 1/8, 3/8, 3/8, 1/8, as shown in Figure 2'a). The derivative of T
is approximated by four impulse functions of strengths 1/2, 1/2, -1/2, -1/2,
as shown in Figure 2(b). We now define the numbers

T, i=/8 T = 112

25 = 3/8 To = -1/2 
(41

T 3 = 3/8 Tj =-112

T4 = 1/8 T4 =-112

the midpoints of the pulses

t = i + - . t = j + j: 2 (42)
p 2 q 2

and the pulse Green's functions

q-2

n R
- + a-

G 2 ÷S 2 dj0i...-. P sn 15

2

Rp W 2 +02 -2 po Cos + (Z- 2 (4
p p p (4



. 1 4

T

r, Ti
r,1 t j

i i+1

(a)

t i+I

Figure 2. (a) Triangle function (solid), four-pulse approximation
(dashed), impulse approximation (arrows). (b) Derivative
of triangle fun.tion (solid), four-pulse representation
(dashed), impulse approximation (arrows).



In terms of these definitions and approximations, the matrix elements (59)

reduce to

•-t- G n+I n1
,tt.[i TpT (sin v sin v

(Zn ) 2Zn )i u p q p q 2

p=1 q=1

+ cos Vp cos Vq C-n) + -TTT Gn I
(tO 4 4 [ n+1 " Gn-1 l T' qG]

(Z )ij > [•iTpTq sinvp 2 W- n

p=l q-1 (45)

sin4 4Gn Gni TZ--" . +4, T T si n l v -l n___-
nt)ij : __ £ . Tpq q s 2 WE___n

p=1 q=1

4G4G2T T
(zono)i j l T G n+l + Gn-i _ n 2 _T G

p=l q=l 2 jWEp

Here pp, VD, pq, vq are the p and v evaluated at t and tq respectively.

Finally, we evaluate the Gn of (45) by a combination of analytical and

numerical techniques as follows.. The interval 0 < < n is divided into M

equal intervals, and (43) approximated by

M j q-2
2 I- jkR~

G - M cos n2 dt e___R p (46)

m=l j + 2 p
2

where m = (m - 1),•/M. The R of (46) is evaluatcd at • = " Define

Rpq = P Pq - ppq Cos rm p 7
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Then IR - RpqI < 1/4. If the distance between peaks of the triangle functions

is a tenth of a wavelength, then kR p - R P n/20, and exp (-jkR p) may be

represented by tuo terms of its Taylor expansion about R . This gives
pq

~ j+ q-22

M• jkR 2 - jk(Rp-R pq)

G = cos no e Pq dt R (48)

2

For the final integration, we approximate t by a straight line between

t + 1- + and t j + q-2 Then z and p are linear in t, and the integrand2 2

of (48) can be simplified by completing the square. This gives

t + 1/4

M o -jk( -R
27( jk pq 1-k d RPq

Gn- M cos nom e dt (49)

m=l t - 1/4

where
to = j(z -z ) Cos v + (p cos 0m - oq) sin v i (50)

d2 = R2 -t2 (51)
pq o

The integration of (49) is now straightforward, and one obtains

M

Gn = • cos no f(Om) (52)

m=w1

where
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f(0M) = e-kRpq [2(+jkRpq) logt 2}+ -_jk1 (53)tl +• - (j

and

= = 1+ (54)
t o -0 4 2 0o

This completes the evaluation of the impedances.

Some computational details will now be discussed. In (54), if to is

larger than 1/4 both t and t2 are positive, but if t is less than 1/4, t 1

is negative. In this case the log term of (53) should be replaced by

(t +- T? J-1 +~2+
2

Log de2  (55)

G is the scalar potential due to a chayge distribution on the lateral sur-
n

face of a frustum. The approximation (46) supposes line charges at 0 " If

the source point is very close to the field point, the granular nature of the

line charges may be too restrictive. When the source and field points

coincide on the first interval 0 < <_ M the line charge at IT is spreadS2M

out into a uniform surface charge. Furthermore, if the surface of this first

interval is approximated by a plane rectangle of dimension 1/2 by ,

1/4 M

Gn dy dx+ Z cos ho f( . (-6)
n 0 0 1x 'y m=2`

Now, since

ox o ,+ -+ log(x +VY+ x 1 (57)

!.+Y [
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7-e can ,e.ýuce (56) co

y + vY2+x + 2 -,ikx M~Uri• x o --- c o + Y -og .o ""---, ---£ + cos Orr•,¢
Gn Pq " ° q

where

-o M Yo 1/4 (59)

A more elaborat2 method iivolving a lo'a.ilz-d, increase -n the density of'

line charges was attempted but waz abandcned when tbLe rsý-t did nct differ

appreciebly from (58).

E.
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IV. COMPUTATION OF .MPEDANCE-3

Equation (45) for the impedances has been programmed in Fortran IV for

execution on an IBM System/360 Model 50 computer. Appendix A lists the com-

puter program and all its printed output for the first mode (n=l in (45))

for a sphere of radius 10 and raoius to wavelength ratio 0.2. Also included

in Appendix A are instructions for the use of the computer program along

with some explanatory notes to facilitate possible modifications. In the

interest of simplicity, tie program is written tc compute one mode at a

time. Input data cons 4 st: of the mode number, the total length (an integer

determining the siz- of the impedance matrix desired) of the curve that

generates the surface S, an integer telling how many times to subdivide the

axis between 0° and 180O for the G of (52), the wave constant --L and some

arrays defining the angle between the tangent to the generating curve and

the z axis, the cy)indri'zal coordinate radius p of the generating curve and

z the axial distan,-e from the start of the generating curve at the lower

pole. The output consists of some of the Gn of (52), the impedance matrix

Z, an• its inverse the admittance matrix Y, as explained in Appendix A.

To check the accuracy of the program, the impeanrice for current on a

sphere has been evaluated by spherical mode expansions. The details of the

solution are given in Mautz's thesis.[11] The final result for any mode

with ejmo variation on a sphere of radius a ,

( r )i = rD n n -nj n ni nj(

ttA j L nT b b. + XTMbc I
n=_ml (60)

m ni nj n ~nicnj
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(ztn)i - ( jt)i

O0

Zo i [yE C ~C + M b b( ,j F n nij n ni njn-- '•i mn -

where
4naL(fn (n+l)(n+m) 1(61)

Dmn 2n+l) (n-m)'

The eigenvalues are given in terms of alternate spherical O~essel functions

as

XTE )(2)
n Jn(ka)H n(ka)

(62)
Jk ^(2)t

nTM = an () H (ka)n Jn-'a n

The b and c coefficicnts are

b -21ra 2 m M P",(cos f (T) -jI;

nj n
C (65)

c 2-,a n. f d

where f.(t) iz the j" ýxpansicuI f'ý,ction as i::fInc- in gen-:.,:, and
in particular by , The.• Ir..( are af ae Lc .ilas.

The evaluation o' .- ) was acne
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Table 1

Comparison of impedance elements on a sphere of radius 0.2%, using

9 expansion triangles, n = 1 mode.

Impedance Formula (45) 18 TE and TM 9 TE and TM

element of Section III modes in (60) modes in (60)

tt 5.3-198 9.6 j6.
Z 53.46 - j2 4 77. 53-3b - J1908 53.56 - j616.5

Zt 26.3c,-- 768.9 26-83 - j701.O 26.83 - j567.9

50.26 l00• + j52.J6 2 10.08 + j151.8

"57.67 - j2641 57.36 - j2236. 57.36 - j1754r

I
5Z 32.90+ j9 467 32.93 + jll.05 32.93 + j9.903

1 29.26 - j34..36 29.27- j34.37 29.27- j40.57

z1t 1569. - j54..88 !U00. - j55-08 321.6 - j55.08

1•(-1.68 + j.343xo4 (-2.'A1r + j.405)xlo- (-2.4.8 + j4o)i-

zt• i-37.15 - j27.17 -37.!3 - j27.25 -78-j72
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Table I shows representative computations for a sphere of radius a =

using 9 equispaced triangles. In other words, the expansion functions are

(30) with the t. =1,2,...,o, and the z axis cuts the sphere at t. = , ana 10.

The M appearing in (52) is twenty. The mode chosen is n = 1 in (45), and

correspondingly, m. = 1 in (60). Column 1 of Table I gives the computation

using the general solution (45) of Section III. Column 2 gives the solution

using 18 terms of the infinice series (60). Column 3 uses 9 terms of the

series (60). Notice that the real parts of Ztt and Zo and the imaginary

part of Z are identical for the 18 term and 9 term solution of (60)

and are only slightly different from those of (45). The imaginary parts of

Ztt and Zo and the real parts of Z t and Z of (60( are converging very

slowly in the modal solution, but are converging towards the corresponding

parts of the general solution. Z is supposed to be zero, and the non zero
55

values of Z in Table 1 are so small that all the significant figures are
55

probably meaningless. On the basis of comparisons such as Table 1, it

appears that our general program is sufficiently accurate for most purposes.
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V. MEASUREMENT MATRICES

Any linear measurement of the field from a current j on a body S can

be expressed as a linear functional of sT, that is

measurement = > jds (64)
S

where Z r is a known function. If the excitation-measurement system is viewed

as a two-port system, it can be shown that Zr in (64) is the field on S when

the measurement port is excited. 3 For a moment solution, the current is

given by a superposition j I 4i.,j , and (64) reduces to

measurement = [R] [1] (65)

where [I] is the matrix (15) and [R] is a measurement row matrix

[R] [ Er>] (66)

Note the similarity of [R] to the excitation matrix defined by (14). If

the matrix solution (17) is now substituted into (65), one has

measurement = [RI[Y][V] (67)

The symmetry of (67) with respect to [R) and [VI reflects the reciprocity

theorem of electromagnetic theory.

For bodies of revolution, the expansion for j can be separated into t

and 0 di-ected components, according to (23). It is then convenient to

partition [R] into t and 0 component terms as



2~4

(68)

(R•)i - <i' •r>
ni

The analogous partition for excitation [VI is given by (27). Now one can re-

write (67) in partitioned form as

measurement =[rrt, [ROI] nYt nY~l -[[Vt
(69)

[yot] [YO] j Vo

wnere the Y submatrices are obtained after the Z matrix is inverted, and are

not the inverses of the corresponding Z submatrices.

An important special case is that of radiation field measurement. It

has been zhown that the radiation field from currents j on S is given by[ 8 ]

"J e- [RI [1] (70)

where the elements of [R] are given by (66) with

Er =ue- " (71)

This is a unit plane wave wit.h polarization vector u and propagation ve--tor k,

An arbitrary plane wave is a superposition of two orthogonal components, say

and E Hence, one can treat the general case as two applications of (71),

one for • = and the other for p = u. To distinguish between the two cases

let
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(Rnto~

(72)

(RýO) r ~

for the 9-polarized case, and

(RtO). t r

(73)

(ROO). r

for the 0-polarized case.

The excitation matrices can now be evaluated as follows. Let

jk(p sin e cos 0 + z cos ) r)
g g rk e (74)

where 8r and or = 0 are the angles to the field point of measurement. The

dot products required in (72) are given by

r = c sin v cos 0 - sin G cos vS• o r r

r (75)
cos r sinr

Using the integral formula for Bessel functions
2n£2

g(p e-jp cos 0 e-JnO do (76)n 21T
0

one can now evaluate the 0 integrations in ((e), obtaining

to n+1 N jkz cos o r Jn+l-Jn-l(Rnt~ 21rjn dt p fi(t) co sin v
n d r 2

0
+j sin r cos v J nr n

(Rn)i = -2njn+l N dt p fi(t) e r cos 8 j n+l+Jn-l (77)
0 r 2j

S~0
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where

Jn = J n(kp sin Qr) (78)

Similarly, to evaluate (73), let

r jk(p sin 9r cos 0 + z cos 9 )
Er re ) (79)

The required dot-products are then

U = sin v sin €

(80)
r

and the 0 integrations in (73) can be performed. The result is

t N cjkz cos e Jn +Jn~

(R to 2.jn+l dt p fi(t) e r sin v .j-l
n S 2j

0 (81)

n N jkz cos9 J -n(n0) 2•n+l dt pr n+l n-
e 2

0

where (78) again applies. For computation, the p fi(t) in (7) and (81)

were the triangle functions (31). The remaining integrals must be evaluated

numerically for bodies of arbitrary contour. In general, R and RO aren n

even in n, while R n@ and Rto are odd in n. As shown by (22) and (24), then n

excitation matrix [V] differs from the measurement matrix [R] only by the sign

of n. Hence, for plane-wave excitation of the body,

(Vnpq) (RPnq). (82)
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where pq represents te, Oe, to, or 00. Equation (82) means that the V. are

given by (77) and (81) with n replaced by -n and er by 9t, and does not imply

equality of excitation and measurement.

For axial incidence of plane waves, equations (77) and (81) reduce

considerably. In this case r = n and all R = 0 exceptr n
N

(l Gi (R-). -G dt p f (t) e- sin v

0
N

(ROO) -(RO)i = jrt dt p f,(t) e-jkz

0

tte
( 1' ~ ( e . = - ( 1  ), (8 3)
(R~0  = (Rt) = jR9

1RO i RO -ii 'li

Hence, only the n = -1 and n = +1 modes are excited by axially incident plane

waves.
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VI. APERTURE ANTENNAS

An aperture antenna is a radiating system consisting of a conducting

body with apertures through which electromagnetic energy is supplied. For

analysis purposes, it is assumed that the tangential electric field E t is

known over the aperture, It is, of course, zero over the conducting body.

This known field F corresponds to E= - in the general analysis of

Section 1. Figure 3 represents the general problem, showing the body S,

the aperture, and radius vector to a distant field point.

In terms of a moment solution, the excitation is the known k in the

aperture, from which the excitati-)n matrix may be computed by (14) by setting

i jnO
B.= - In general, this results in an excitation of many e modes, each

of which ýan be treated separately. The current on S for each mode is found

by in.r!rting (25), and the total current is the sum of the modal currents,

that is

S= nnn] n [Vn] (84)

n

wihere ndenotes the mode. Similarly, the radiation field for each mode is

found from (70), and the total radiation field is the sum of the modal

fields, that is

E .141-ikr -R] [y ] •Ln] (85)
u 4gr n n n

n

where u = e or 0, and n aGain denotes the mode.

For simplicity, illustrative computations have been made only for the

case of excitation independent of ¢, which excites only the n = 0 mode.



29

z
S8r r to field

S~point

Et given
in aperture

conductor !

-- Y

Figure 5. An aperture in a conducting body of revol'ution.
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This results in a furtner simniific;tion in t-Iat [Xt1 = = 0, that is,
0

there ýs no -ouplinr between "•,.C t-uirectsd currents and the 0-directc:d

cirrents., From Syir:-try co-nsidet--'(nzs, av exc4tation having only an E
t

cumponent produces cnly a 0 current, and an excitaticn having only an E

conponent produces only a J current. Hence, +he problem reduces to two

independenu cnes,

J t [Vt t
=jj F'

(86)

0] LYN] 0

for the crirent, and

e - . v tt

(87)

f t e ER, C an

for the radiation field. The iYo ] and ' I in (86) and (87) are ,he inverses

of [Zt] and [Z J, respectively.;

To check the program, radiation from anequatoriaL~y slotted conducting

sphere was computed both by the clas.ical eigenfunction expansion and by the

gene.ýa! prograxn. Figure 4 shows the current density on a sphere of radius

a = 0.21, excited by an E- = b(G-'/2)/a ir the equatorial slot. This gives

rise to Vt. LIT !I t. is on the equator, and 2'cro otherwise.: The eigenfunct4 on

solUtion was cumputed using 15 terms of the Fourier series. The real part of

t.he current converged very rapidly, and can be considered as exact. The

imaginary part of the current does not converge at the source, and converces
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slowly elsewhere, and hence the imaginary part computed from 18 terms of the

Fourier series is not exact. As can be seen in Figure )4, the N = 10 solution

using the general op'-ogram s ir. good agreement 4ith the eigenfunction solution.

Computation of radiation field pattcrns for the two solutions agreed to within

less than one percent accuracy, and hence are not shown.

Figure 5 shows the current density on a sphere of radiL,.s a = 0.2% excited

by an E= -b(@-n/2)/a in the equatorial slot. This gives rise to Vj = 2n

jOwhen tj is on the equation, and zero otherwise. Again the eigenfunction

solution was computed using 18 terms of the Fourier series, aid the real part

of the current converged very rapidly. However, the imaginary part of the

current does not converge. The real part of the current comýuted from the

N = 10 case of the gernral rrogram. again aglees well with the :igenfunction

solution. It is difficult to say anything about the imaginary part because

of the divergent nature of the solution. Computation of the ;'adiatior field

patterns for the t';o so'lutions again agreed to within a few lt-rcent.

Evidently the radiation pattern tio,.s not depend strongly on the non-converging

imaginary pdrt uf the current.

Az an examplie of a body of more complicated shape, comp',.ations were

nade for apertur,' excitation of a cone-sphere. This body is formed by wedging

a conducting sphere into a conducting cone, resulting in a stape similar to

that cf an i-ýe cream cone. Tbhe radi-os C.' the sphere is a = L.2%, and the

cone half angle is 110 . The aperture is e na-rc.w slot near the cone-to-sphere

junction. Figure 6 shows the current density wher. -,he exciltation is an

impulsive Et in the slot. An N = 20 solution is sh,•wn, but smalle:_" values of

N give reasonably accurate solbtions.

I.~ .•n ,iIi m ~ m1l . ~Uam••mma



(0) 0

0 &

-4

1-0 0x
0.)

CCi 00

00

00

W4J

00

cd

0 0 0 0 00
C~4-N

saiedJDIIIW ul ro-)



35

ssiodwo u! (#rD)WI1L?,

OD (9i N ci a
-~~ 0 i 0

0-

041)

- 4 )

91 0

0 CD

0 4J

~43 C
W 34

-4.

03

CYS

OD C~l 0 cu O

saiedwoillpI. ui(ri)~~



Figure 7 shows the same cone-sphere excited by an impulsive E in the

slot. Again an N = 20 solution is shown, but usable r-sults could be obtained

with a smaller N. Note the extreme osci latory nature of the imagina.ry part

of the current. Theoretically, the imaginary part does not converge, as dis-

cussed previously for the sphere.

Figures 8 and 9 show the power gain patterns for the two cone-sphere

excitations discussed above. For a given polarization, the power gain normal-

ized to omnidirectional radiation is[9]

4 1rr2 IE 12  (88)

where 0 P rad

where = and Prad is the power radiated. From (70) and (17), the

numerator of (88) can be expressed as

4nr 2 IEut 2  [R[ [vI 2 (89)

In general, the power radiated is given by[I03

4SPrad = R " .ds = Re [Vi [Y] [V] (90)

where the elements of the row matrix [VI are

V. E*• ds (91)
S

For the excitations used in Figures 8 and 9, only one V. is nonzero, and

V. V.i= 2n. Hence (90) reduces to a single element of the [Y] matrix. In
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particular, for Figure 8,

N-1 o2
>k R jYn nji

e (=l ' (92)

where ti is the point of excitation. Similarly, for Figure 9,

N- 
2

r•k2 (Rn0). (Y0)I

j= 1 - f2 I -( 
3go 4r, Re(Yn)i(

where again t is the point of excitation.



VII. PLANE-WAVE SCATTERING

The radar scattering problem cons LSts of a plane wave incident on a

scattering body, plus measurement of the far-zone scattered field. Figure 10

illustrates the geometry of the problem for conducting bodies of revolution.

In general, the incident wave i can be expressed as a superposition of the

two orthogonal components EI and El, and similarly the far-zone scattered

wave Vs as the superposition of E and E . These are related by the scattering9
matrix [s] of the body according to

(94)

s 00

The elements of [s] can be expressed as a summation over the modal components

spq = j Pq (95)

n

where pq denotes e9, eo, 0E, or 00. The scattered field is given by (70),

and hence

n= 4j [_tp I Rop] '[Ytt] [ytO] [V

S ] j j(96)

where the Rn elements are given by (77) or (81), and the V elements by the
n n
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Figure 10. Plane-wave scattering by a conducting body of revolution.
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Ssame formulas with n replaced b:; -n and re1 by e.

Radar soa•.•ering data are cf;en p-cscnted hi. termni of thc ladar' :ross

secti.on, d2fir.ed as

sOpq 4,2 Is

As indicated, a depends both on the received pojeriza.ion p and the incident

polarization a. it follow. from (34) and f97' that .'.r r given poia-ization,

An incident wave of arbitrary p lariz..tion can b express.. d as the super-

position

- + ,

wnere =2i. The matrix

is called the ooi~rization rm~atrix. Let [al be the polarization matrix of t:3,

incident wave when the transmitting antenna is excited, and [,r] be thc trans-

pose of the aolarization matrix of the incident wave when the receiving antcnn3

is excited. Then the component of scattered field that is polarization-

matched to the receiver is

Es e [kr] [sj ] [C•ti i (C
E r

and the radar cross section is

I
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0 4-1 -Lsj (102)

where [s] is given by (94). Equation (98 is a special ase of (102).

For cimplicit-, only excitation by axially inrident plane waves is

considered for co•inpatation. Let

E= u ' X (105)

which can be considered a c-polarized plane wave from a transmitter at

coordinates 9, = n, 0= . The excitation matrix elements are thus given
U

by the first two equations of (83) witn R replaced by V, n 'y -n, and Gr by

Only the n = +1 modes are present in the excitation, giving rise to Only

the same two modes in the current. The symmetry relationships (29) and (32)

can now be used to obtain the simpler form.

la = J • t O co u+ J sin (1,04)

where

N-]

1 2(i).f )

i:! (105)
N-.

VI= 2j .. (i4~~~~

and f.(p) = T(t-ti)/p. Hence, the current is compietel]) specified by it-

n I mode coefficients.,

To check the program, the current on a sphere excited by tht plane wave

(iOs) was computed bota by the classical e'.enfunction method arnd by the

general computer program. Figire 22 shows the magait,:des of Jt and JO of (1O4)
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for • s•-er• f r-iuý a = C2., using N =O for the general program. The-

g u2.to anscn c-)nvergcs very rapidiy aicd can be considered as cxact.

The &irren, de-;,i-y fs rormalized with respect to the inciaent magnetic fi-ld
intensity. v.ng a dimens; Dnless quantity which is 2 for a plane conductor

covering the z -- C- plan., The radar scattering patterns coa.puted by the

eigenfunction .,re-,ehi and by the N = 1O general solution were almost .ientical,

and. are no- ,ho,,n.

Figure 12 sncws the current on a cone-sphere excited by a plane wave

axially incident on the tip. The radius of the sphere is again C.2%, which

is the same as used in zhe antenna examples. Again J and J3 of (104),

normalized with respect to KI, are plotted. To illustrate convergence, both

the N = 20 (circles) and the N = 35 (solid line) solutions are plotted. The

J' current converges fairly rapidly, but the J' current converges more slowly.

Even tne N•= 30 solution cannot be considered accurate for JA. Apparently

the rate of convergence is affected by the sharp tip of the cone. For better

convergence one could include a term in the cuirent expansion to properly

represent the singularity at the tip. However, radar" scattering patterns

are insensitive to small oscillations in the currents, and more accurate

s-lutions are not needed in most cases.

Figure 13 shows the current on '.he same cone-sphere excited by a plane-

wave axially incident on the spherical end, that is, the end opposite to the

pcint The above com-ments concerning convergen-e apply also to this excitation.

Figures 14 and 15 show radar cross section patterns for tne cone-sphere

ex.citstions corresponding to Figures 12 and 1i, resrectively. The icos were

made using the N = 2C solution, but the c-orresponding N = ýC solution gave

ahrost identical results. The only difference occurred in -he vicinity of
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forward scattering where a change in c of the order of a few percent was

obtained. This region is most sensitive to inaccuracies because all parts

tend -;o radiate in chase in the forward direction. All plots are normalized

to to make them dependent only on length/wavelength dimensions, not on

absolute dimensions. The curves labeled a E)!/ are in the • = 0 plane, and

are the radar cross sections measured by a @-polarized receiver. The curves

labeled cos are in the 7 = T/2 plane, and are the radar cross sections

measured by a 0-polarized receiver.

Because only the n = I and n = -1 modes are present in the excitation,

these are the only modes present in the scattered field. From (95) and the

symmetry relationships (29) and (82) one can show that

s =2sI cos

(106)

S 2j s., sinr
. r

where s s@ and s are the n = I modal solbtions evaluated at 0 = 0. Henpe,

f.'om (95) and (106) it follows that the radar cross sections are given by

69 !•t~c~s 2 C

a -G 16ri sG

(107)
0 2 ,2e= I ll si,,

Hence, the graphs of iigures 14 and 15 are proporticnal to the coefficients

2
of cos 0 r and s~o2 Ir in (]07),

r r4



49

0

0

OD0

..............

C.

c

0

:3-4

0 x
Co +)

o41

0

vox



50

00

0 0
aca

4, 0.

(b-

b ~40
'-4

4J4,

0 V

0)

00
a,
41
041

*0

-40
4,-



51

VIII. DISCUSSION

This report develops a solution for the electromagnetic behavior of con-

ducting bodies of revolution with arbitrary excitation in terms of generalized

network parameters. 3 1 Basically, +his involves the application of a moment

method to the superposition integral representation of the problem. Because

of the rotational symmetry, a Fourier series expansion on 0 is used. To

facilitate the handling of arbitrary body contours, a subsectional expansion

on t is used. The simplest subsectional function is the pulse function, but

it is not in the domain of the original operator because derivatives nmust be

taken. The derivative can be replaced by a finite difference approximation,

thereby approximating the operator. However, it was found that difference

approximations did not yield as good accuracy as desired. The next simplest

subsectional function is the triangle function, and this was used for the

general program. Its derivative is a doublet pulse, and he-nce no approxima-

tion of the operator is necessary.

Three types of singularities are encountered in the general solution:

(a) a singularity in the coordinate system along the z axis, (b) singularities

of curvature in the body contour, such as at a cone tip, and (c) singularities

in the excitation. The first type introduces difficulties in the numerical

evaluation of the impedance elements, but can be overcome by careful analysis.

"The second type could be taken care of by special subroutines at points of

discontinuity in body curvature, but would be difficult to implement. No

attempt has been made to do this in the general program. The third type of

singularity is impractical to inclule in a general solution, because then the



impedance matrix would depend on the excitation instead of being a function

of the body geometry alone. It could, however, be incorporated into particular

solutions. For example, the singularity i. the current at feed point of a

slot-fed antenna can be accounted for by including the proper singularity in

the expansion functions.

If only the radiation and scattering patterns are wanted, but not the

current, then less accuracy is required in the solution. This is because

such patterns are continuous linear functionals of the current, and, as shown

by the calculus of variations, are accurate to the second order when the

currents are accurate to the first order. For example, if the current has an

error of the order of ten percent, the radiation field has an error of the

order of only one percent. Furthermore, the radiation depends primarily on[he current moment pJ instead of the current itself. Hence, inaccuracies at

the poles (p = 0) of the body have little effect on the radiation pattern.

Finally, rapid oscillations in the current about the correct value also have

little effect on the radiation field. They contribute mainly to near-field

stored energy.

The generalized network parameters of a body are basically a matrix

approximation to the functional operator equation for the problem. Hence, so

long as the computational approximations are valid, one can compute the

response of the body to arbitrary electromagnetic excitation. Aperture
antennas (Section VI) and plane-wave scattering (Section VII) are but two

examples. Another problem of interest is exciý.ation by current dipoles in

the vicinity of the body. Still more generally, both the excitation and

measurement can be taken in the near-zone if desired. Radiation by loaded

aperture antennas and scattering by loaded scattering antennas can also be

IJ
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treated by known methods.i 4j]I]

Other problems can be treated by modifications or extensions of the

theory. For example, the internal resonances of a cavity of revolution can

be found by a procedure similar to that used for waveguides of arbitrary cross
[121

section. The problem of scattering by a homogeneous dielectric or magnetic

body of revolution can be treated in terms of equivalent electric and magnetic

surface currents. Hence, an extension to include both electric and magnetic

currents could be used to solve such problems.
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APPENDIX A

THE COMPUTER PROGRAM

This appendix provides a description, in terms cf Fortran IV language,

of the computer program that finds the generalized impedance and admittance

matrices for a conducting body of revolution with surfecz S. Section A-I

gives inztructions for using the computer program whilt Section A-2 gives some

explanatory notes to facilitate possible modifications. Section A-3 lists the

computer program along with the data for the first mode (n=l in (45)) of a

sphere of radius 10/a and radivs to wavelength ratio 0.2. Section A-4 gives

the printed output for this same data.

A-1 Instructions for using the computer program

The program, written in Fortran -V level G and tested on an IBM System/3 6 0

model 50 computer, accepts punched card input data and outputs the generalizee&

"impedance and admittance matrices via both the orinted line and a direct

access storage device.

The direct access storage device was assigned the data set reference

number 4. Statement number 1 early in the main program

1 REWIND 4

returns the data set number 4 to the first record if it is not already there.

Each unformated WRITE (4) statement defines a new record on data set number 4.

If the first n records have been written previously, it may ne desirable to

skip them and start writing on the (n+l) record. This is effected by following

statement 1 with n identical READ (4) statements. There are no such READ (4)

statements in the listing of the program in Sectioa A-3.
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All the punched card data are read early in the main program according

to the statements

50 READ (1,lEND=52) NI N, NPHI, BK

51 FORMAT '313,E14.7)

KG = 2*N

61 READ (I,53)(VS(J), J = I,KG)

62 RDAD (l,53)(zs(J), J = 1, KG)

63 READ (1,53)(R(J), J-- 1, KG)

53 FORMAT (lOF8.4)

in that order. According to statement 50, several sets of data may be pro-

cessed with control going to statement 52 when the data are exhausted.

Statement 52 is a stop.

NN = the mode number the same as n appearing in (45). NN must be

either zero or a positive integer. If NN is large, NPHI must also

be large for the numerical integration (46) to be accurate.

N = total length of the generating curve. N is a positive integer.

There will be N-1 expansion functions for the t directed current

and N-1 expansion functions for the 0 directed current. Conse-

quently, the Z end Y matrices will be 2*(N-l) by 2*(N-I). For N

larger than 20, present dimension statements must be altered.

NPHI = the number of equal subdivisions of the 0 axis from 00 to 180'.

NPHI corresponds to the positive integer M appearing in (46).

NPHI must be large enough so that -s- * NN is less than a radian.NPHI

The maximum electrical length corresponding to an excursion T in
NFHI
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rshould also be less than a radian. If NPHI is larger than 40,

present dimension statements must be altered.

K= propagation constant k appearing in (46). For reliable results,

BK should be less than one.

VS(J), ZS(J) and R(J) are arrays that describe the geometry of the sur-

face S of revolution. The J indicates evaluation at t = 2 whore t is

the arc length along the generating curve, zero at the lower pole of the body

Sof revolution. J runs from 1 to 2*N.

VS = the angle (radians) between the unit vector in the t direction

and the axis ( z axis) of the body of revolution. VS is positive

when it is diverging from the z axis and negative otherwise.

ZS = axial distance z from the lower pole

R = distance p from the z axis.

All of the above data are printed after they are read in. Statement 58

58 WRrI (3,64)(G(K), K = 1,NG)

prints some G's of equation (52). The Z matrix is printed byn

95 WRITE (3,88)(Z(K), K Kl,K2)

88 FORMAT (lx, 12G11.4)

inside DO loops 89 and 90. The impedance matrix is stored columnwise in the

ttlinear array Z. The submatrix (Zn )ij of (45) is labeled Zl and printed

columnwise. The first element of each column begins a new line. For a
tt

column of the submatrix (Zn )ij the "source point" j is fixed and the "field
n i

point" i runs from the lower pole to the upper pole. Similarly, Zot, Zto and

-- V
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lid
Z" are labeled Z2, Z3, and Z4 and printed. The impedance matrix is put into

direct access storage by

Next, the admittance matrix (inverse of the impedance matrix) is calculated

and put into the same array Z. The admittance matrix is outputed exactly

as the impedance matrix was. The printing is by

96 WRITE (3,,88)Iz (K), K = x1, K2)

in DO loops 93 and 92. The direct access data set 4 is written by

34 WRITE (4)(Z(I), I = 1, NZ)

Throughout the program, the sequence

CALL CLOCK (Ii, 12)

WRITE (3, 99) If, 12

99 FORMAT (lX,217)

appears many times. CLOCK is a subroutine which, perhaps :iot available on

all 360 computers, can be called as easily as SIN or COS. The first argument

I1 becomes the time in seconds while the second one 12 gives the year and day.

A-2 Explanatory notes on the computer program.

LINEQ(LL,C), the first subroutine to be compiled, accepts an LL by LL

complex matrix stored columnwise in the linear complex array C and returns

the inverse of this LL by LL matrix into the same array C. Of course, the orig-

inal elements of the matrix are destroyed. Although the duzm= array C is only



dimensioned C(1) in the subprogram, all the space of the corresponding array

in the calling sequence in the main program is available. Because of the

• statement

DIWMSION LR(58)

early in the subroutine, LL Irust not exceed 58. LINEQ(LL,C) uses the sub-

program CABS. Also, since the matrix elements are complex, complex addition,

subtraction, multipli.cation and division routines are tacitly assumed.

The second subroutine POT(AC,GS) computes f(m of (53). The variables

in common are

RRI = pq sin v q (z -zq) cos vq
q pq

RR2 =-p sin vq

2 2 Z- )2
"R q + p +7p

• RR4 =-2p pq

BK k

The arguments of POT are

AC = cos

GS =f(m)

GS is the only output of the subroutine POT(AC,GS). RU!, RR2 and AC are com-

bined to give to of (50). RR3 and RR4 are used to find R . When in (53)

l t/22d is much larger than 1/4, the argument of the logarithm becomes close

to one. Then, the series expansion for log(l+x) could possibly have been

used in the subroutine POT(AC,GS), but was not. The subroutine POT(AC,GS) uses

the subprograms AIDG, SIN, COS, CMPILX, ABS, and SQRT.
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First of all, the main program reads the punched card data ani then

prints it to be certain that it was entered correctly. The constants A and

are inserted just after statement 47. The DO loop 2 puts 0. appearing in

(46) into ANG(J) and cos in AC(J). The DO loop 10 puts ! cos (n-I)j

j running from 1 to NPHI, in CSM(l) through CSM(NPHI), 1 cos n in CSM(NI+l)

through CSM(2*NPHI), and 1 cos (n+l)0 in CSM(2*NPHI+l) through CSM(3*NPHI).
M

The nested DO loops 16 and 17 compute the Gn of (52). Actually, for the

fixed n appearing in (45), Gnl, G~ and G are needed. All are put in the
n-l' -n n+l

linear complex array G. The G n.. are put in G(l) through G(NG), Gn in G(NG+l)

through G(2*NG), and Gn+1 in G(2*"i±.l) through G 3*NG). Gn.1 is a KG by

KG array. (KG=2*N and NG=KG*KG). The complex number G n.((J-I)*KG+I) is

for the field point at I and the source in the vicinity of J. In DO loop 5,

the subroutine POT is called upon to put f(OK) Of (53) i.nto GS(K). If (I=J),

the logarithm f-cpression of (58) in,.tead of f(o,) is put into GS(l). The DO

loop 13 performs the summation (52). The outer DO loop 68 obtains the cases

(n-l1), n, and (n-1).

After the G's are printed by statement 58, the numbers of (41) are in-

serted into the arrays T and TP. The impedance matrix (45) is computed in

the nested DO loops .50 and 31. I and J correspond to the i and j of (42).

The subscripts for Ztt, Zot, ztoand Zoo are respectively Ll, 12, L3, L4 so

that the impedance matrix with the vubmatrix arrangement of (25) is put

eolumnwise into the linear complex ar:ray Z. The nested DO loops 70 and 71

perform the double sum in (45). Ii corresponds to p and JJ to q.

The logic between statements 84 and 89 is a routine to print Z. The

statement
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CALL LINE (NW),Z)
%a

inverts the impedance matrix. The admittance matrix now occupying Z is printed

in DO loop 93. The data included at the end of Section A-3 is for a sphere

with

NN=1

N =10

NPHI 20

BK = 0.3947842

BK is the propagation constant for a radius of 0.2 wavelengths. The portion

of the data defining the geometry of the sphere was actually computed and

punched on cards by a short auxiliary computer program.

If N or NPHI is too large, the dimension of sane ariays'must be increased.

All the arrays whose dimension depends upon N or NPHI are listed below.

COMPLEX Z(NMW**2), GS(NPHI), G(12*N*N)

DIMENSION VS(N*2), SV(N*2), CV(N*2), ZS(N*2),

R(N*2), ANG(NPHI), AC(NTHI.),

CSM(3*NPHI)

Here, as in the program,

M = 2*(N-1).

-AW
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K

CALL LINEQ (M2, z)

inverts the impedance matrix. The admittance matrix now occupying Z is printed

in DO loop 93. The data included at the end of Section A-3 is for a sphere

with

NN=3

N = 10

NPHI= 20

BK =0.3947842

BK is the propagation constant for a radius of 0.2 wavelengths. The portion

of the data defining the geometry of the sphere was actually computed and

punched on cards by a short auxiliary computer program.

If N or NPHI is too large, the dimension of si.ne ariays must be increased.

All the arrays whose dimension depends upon N or NPHI are listed below.

COMPLEX Z(W**2), GS(NPHI), G,(12*N*N)

DIMENSION VS(N*2), SV(N*2), CV(N*2), ZS(N*2),

R(N*2), ANG(NPHI), AC(NPHI.),

CSM(3*NPI)

Here, as in the program,

NN2 2*(N1).

4



A-3 Th coputer program

//REV17O j(18 100 3 4 .E&,li,03),tMhU7g,J0nFI,M~tLFVFLxi
F/IXEC P(JRTGCL19PA~t4.FnRT=#MAP$9PARM*LKFO:6XREF6

IIFCIRT.SYSIN DD
SIHRUImT INE L INFO(LL C)
rnfmPL:EX Cfl)oSTIIQ,STCI,ST,S

a. DIMENSION IR(5R)
DOr 20 1=1,11
LR( J)z

20 CONTINUE
MIZO
DO1) I Mwl,,LL
K=M
00 2 1=MLL
K1=Ml,!

K2=MI+K
IF(CA9S(C(K ) )-CARS(C(K2M PJ?2,A

* f K=J

? CliNT IN0I
LS=LRiM)
LR(M)zLR (K)

IRIK )=LS

STOR =C IK2)
.11=0
w) 7 J=1,LL
K1=J 10K
K2=j1+M
ST0=C(KI)
CIK )=C(K?)
C(K?)=STO/ST,,oR
Jl=J1+LL

7 C' INT I NtJ
KI=M1I'4
CIKi )z./STOR
Vc') 11 1=1.11
IFHI-M) 1,11

* ST=C(K1J

JI~o
DO) 10 J=1,L1

K2=Jlm
CEK )=C(KI J-C(K?)*ST
JI=J1.LL

10 CONTINUE
11 CUNTINLJF

MI 3M1.LL
IA CflNTJNtUE

DOn 9 J=1,LL

14 t=RJu1R~J
J2zfLRJ-1 )*LL

21 W) 13 1=1,11
K?2J2, I

SzCIK?)
Cf K2) zC(K I)
CIKI)RS
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13 CONTINUE

LR(J)=LR(LRJ)
LR(LRJ)sLRJ
IF(J-LR(J)) 1498,14

8 J1=J14LL
9 CONTINUE

RE TUR N
END
SUBROUTINE POTIACoGS)
COMMON RRI*RR2,tRR3*RR49.~K
COMPLEX W3tW49GS.(G
YSuRRI+AC*RR2
Y=ABS(YS)
RD*RR3+RR4*AC
RKzBK*SORT(IRD)

F 02xRD-Y*Y
Y1=Y-.25
Y2=Y+.25
Rl=SCRTfV1*Y1+02)
R2uSORT( Y2*Y246D2)
IF(Yl) 6#797

6 11Nu2.*ALOG(t-Y1+R1)*(Y2+R2)/02)
GO0 TO a

7 TIN *2.*ALOGI(Y2+R2)/(Y1+Rl))
8 SN=SINIRK)

CSzCOS(RK)
SsBK-RKST I'4
W3aCMPLXICS,-SN)
W4zCMPLX(TINv-S)
GSxW3*W4
RFTURN
END
COMMON RR1,RR2,RR39RR4,BK
COMPLEX A39A4vZt3364)9S(S4OJC,(4Roo)
DIMENSIONVS(6O),SV!60),CV(AO),ZS(60),R(AO),ANr,(4O),ACIftO),CSM4 120)
DIMENSION TP(4JT14)*JK(4)

I REWIND 4
50 READ(1,51,END=52)NNNtNPI9I18K
51 FORMAT(313,EI4.7)

KG=2*N

62 READfl,531(ZS(J)9JzlKG)
63 READI1953)(R(J)tJsltKG)
53 FORMAT(1OF8*4)

WRITE(3f54)NNv~tJNPNI .8K
54 FORMAT(IX//' NNx'913,' N-19130 NPHI*,13,' RK*IE14.7)
55 FORMAT(1X/4 VSO)
56 FORMAT(1X/I ZSI)
57 FORMAT(IX/1 R11

-. WRITE(3955)
WRITE(3,46) (VSlJ) ,JwIKG)

46 FORMAT(IX*1OFA.4)
WRITE(3956)
WRITE(3946) (ZS(J),J=19KG)
WRITE139571
WRITE(3946) (R(j) ,Ju1,KG)
DO 47 jsltKG
SV(JIRSIN(VSIJj)
C VIJ I COS( VS(J) I

47 CONTINUE



P1.3.141593
ETA=376. 707
NM*N-1
NI42*NM*2
NZ*N12*NM2
NGsKG*KG
MS5NN.2
M6zNN+4
FMwNN
FM2uNN*NN
DPuPI /NPHI
DO) 2 J=1,NPNI
ANGIJ)s(J-.5)*DP
AC(J~mCOS(ANG(J))

2 CONTINUE
143=0
00 10 fM=uM5*M6

0)0 11 Kzl*NPHI

11CONTINUF
M3=M3+ 1

10CONTINUE
CALL CLOCK(I1.12)
WRITEE 3.99) 11.12

99FORt4AT(1X9217)
00 16 Jwl .KG
AA*DP*R(J)rI.5
00 17 1=1#KG
Z3=ZS(J)-ZSI I)
RRlzFV(JlI*R(J)+CV(J)*Z3
RR2m-' VIJ)*R(J)

* RAR3=fttJ)*RiJ).Rfl)*R(I)+Z3*Z3
RR4=-?.*R(J)*R( I)

21 DO 5 K=2,NPHI4
CALL POT(AC(K)gGSIK))

s CONTINUE
IF(J-.J) 7,8,7

8 XsRiJ)*DP
XXaSORT( 1./16.4X*X)
W1s(2.*X*ALOGU.925+XX)/X)e.5*ALOGftx+XX)/*25)JAA
W2a-11K
GS(I1)*Wl+tO.,1.)*W2
GOl TO 67

7 CALL POT(ACI1)#GS(l))
67 #43aIJ-1)*KG,1

on 68 MM*193
MlafMl-1
M44aMl1*NPH I
M2uMl*NG+M3
r,(M2)s0.
D0 13 KmlNPHI4
K2uKM4M
GE M2)mG(92)4GSIK)*CSMIK2)

13 CONTINUE
6a CONTINUE
17 CONTINUE
16 CONTINUE
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CALL CLOCK!111,12)
WRITE13999)Il,12
WRITE (3,48)

48 FORMAT11X/I POTENTIALS FROM THE CIRCULAR RIRBONS OF CHARGE')
58 WRITE(3,64)IGfK),KxlvNG)
64 FORMAT(1X/fIX,10C11.4))

CALL CLOCK(I1112)
WR ITEI 3,99) 11,12

TP(Ils.5

TPt3)s--5
TP(4)=-.5
TI 1)m.125
Tt'2 )-375
T(3)x*375
T(4)2.125
CAsBK*ETA
CO-CA/BK/BK
D0 30 J=I,NM
Jlu2*(J-1)
JL IJ-I) *NM2
00J 31 1a1,NM
L1*JL+I
L2uLl+NM
L3uLl4NM2*NM
L~aL3+NM

Z(L2)sO.
Z(L3)sO.
ZIL4)0.*

0O 70 JJ=1,4
J2sJl+JJ
KAI=(J2-1 )*KG
KB1=KA1.NG
KCI*KRI4NG
00 71 11*1,4
12a11+11
SSeSV(12)*SV(J2)
CCuCV( 12)*CV(J2)
KA2mKAl+I2
K822KB1+12
K.C2=KCI+12
A3a.5*(G(KC2)+G(KA2))
A4a.5*lG(KC2)-G(KA2))

74 Z(Ll)=Z(L1)4(CA*TilI)*T(JJ)*(SS*A3+CC*G(KB2) )-CO*TP(II )*TP(JJ)*G(TK

Z(L2)aZ(L2),CA*SV(j2)*T(II)*T(JJ)*A4-FM*CO*G(K82)*ThiI)*TP(JJ)/RfIt
12)
Z(L3)wZIL3)-CA*SVI12)*T(II)*T(JJ)*A44FM*CQ*G(K82)*TP(III)*T(JJI/R(J
12)
ZIL4)=Z(L4)+(CA*A3-FM2*CO/R( 12)/R(J2i*G(KB2) )*T(1II)*T(JJ)*10.~ 1.)

71 CONTINUE
70 CONTINUE
31 CONTINUE
30 CONTINUE

CALL CLOCK1,12)
WRITE(3,99111912

84 JK(I1)n
JK(2)*N
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JK( 3) 3N12*N* el
JK(4)=JK(3)+NM
0O 89 J=l.4
K1uJK(J)
WRITE(3*49)J

49 FORMAT(X/' Z1,11)
DO 90 IS1,NM
K~zKl+NM-1

95 WRITE13,PA)(ZIK),KsKl.K2)
88 FORMAT(1X,12G11.4)

K1SK1+NM2
90 CONTINUE
89 CONTINUE
33 WRITE (4)iZ(I)#I-19NZ)

CALL CLOCK(I1112)
WR'TE(3,99) 11912
CALL LINEO(NM2,Z)
CALL CLOCK(Il,12)
WRITE(3,99) 11912
DO 93 J*1,4
KluJK(J)
WRITE(3924)J

24 FORI4AT(1X/I YltI1)
DOn 92 Is1,NM
K2=K 1.N1-1

96 WRITE(3,88)(Z(K),K=K1,K2)I K1=K14NM2
92 CONTINUE
93 CONTINUE
34 WRITE (4)(Z(I),I=I9NZ)

CALL CLOCK(11,12)
WRITE(3,99)11,912
GO TO 50

52 STOP
END

//GO.FTO4FOO1 DO DSNAMExEE0034.REVDISPuOLDfUNlTa2314, x
II VOLUMEuSERnSU0OO4,DCBu(RECFI4sVBLKSIZE81ROOLRECLu1796)

//GO.SYSIN 00 *
001010020 0.3947842E+00

1,4923 1.3352 1o1781 1.0210 0.8639 0.7069 0.5498 0.3927 0.2356 0.0785
-.0.0785 -0.2356 -0.392? -0.549R -0.7069 -0.8639 -1.0210 -1.1781 -1.3352 -1.4923
0.0090 0.0879 0.2423 0.4691 0.7627 1.1158 1.5199 1.9650 2.4400 2.9334
3.432R 3.9262 4e4012 4a8463 5.2504 5.6035 5.8971 6o.1239 6.2782 6.3564
0.2497 0.7431 1*-2181 1.663? 2.0673 2.4204 2.7140 2.9408 3.0451 3.1733
3,1733 3.0951 2.9408 2.7140 2.4204 2.0673 1.6632 1.2181 0.7431 0.2497
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-"The problem of electromagnetic radiation and scattering from perfectly con-

ducting bodies of revolution of arbitrary shape is considered. The mathematical
formulation is an integro-differential equation, obtained from the potential
integrals plus boundary conditions at the body. A solution is effected by the
method of moments, and the results are expressed in terms of generalized networt
parameters. 4L cmuputer program for computing the generalized impedance matrix of
an arbitrary body of revolution is included.

The expansion functions chosen for " moment solutions are harmonic in 0
(azimuth angle) and subsectional in t (contour length variable). Because of
rotational symmetry, the solution becomes a Fourier series in A, each term of
which is uncoupled to every other term. Hence, the problem reduces to a set
of independent modes, one for each harmonic term.

Illustrative computations are given for radiation from apertures and plane-
wave scattering from bodies of revolution. The impedance elements, currents,
radiation patterns, and scattering patterns for a conducting sphere are computed
both front the general program and from the classical eigenfunction solution. The
agreement obtained serves to check the general program. Similar computations for
a cone-sphere illustrate the application of the general program to problems not
solvable by classical methods.
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